SciPolicy Watchdog White Paper
http://www.scipolicy.org

Using Integrative Propositional Analysis to Evaluate and Integrate Economic Policies of U.S. Presidential Candidates

Steven E. Wallis, Ph.D.
Bernadette Wright, Ph.D.
Franklin D. Nash, M.D.

NOTE: This paper is written in more of an academic style, rather than the semi-academic style commonly associated with white papers. This is because the authors believe that it is more important to forgo the delays (and the prestige) of academic publishing in favor of more rapidly sharing these results with the broader voting public.

INTRODUCTION

In this paper we address two intertwined problems: 1) developing effective economic policy by experts and 2) choosing between competing economic policies by non-experts, in a situation where voters manifest their policy choice by voting for the candidate who espouses that policy. We do this by presenting an emerging method that experts and voters alike can learn and apply. That method is Integrative Propositional Analysis (IPA), which we will explain in more detail below.

This study is focused on economic policy because it is a topic of great importance for individuals and the nation. Also, it is a topic addressed directly or indirectly by most of the candidates for President of the United States (POTUS), so it is an area in which we can usefully compare the candidates’ policies.

Our focus here is on the policy model, or logic model defined as, “A cognitive structure (like a theory) representing how a community or organization understands the world, thus enabling them to take specific actions to achieve their goals” [1, p. 102]. Essentially, the model can serve as a blueprint to help the elected candidate guide the economy in desired directions. Our efforts in this paper are to help voters understand what the candidate claims they will do to guide the economy in those directions. Here, for convenience, we will refer to policy models as “maps” and use the terms “policy” and “map” interchangeably.

We will generally avoid other aspects of the larger policy process, such as the research required to develop an accurate map and the implementation required to enact a map. While those are of equal importance, they are beyond the scope of the present paper.

In terms of developing effective policies by experts, part of the problem is that many economic policy researchers, and many researchers across the social sciences, have an intellectual tradition that does not focus on how the data are assembled or structured...
into understanding the program or policy topic at hand. This is problematic because “facts” are always based on underlying assumptions. Or, from another perspective, the objectivity of our data is suspect because all data are theory-laden [2, p. 311-322]. Thus, without an explanation, i.e., “theory,” the data are meaningless and not useful for improving economic policies to be more effective in achieving their goals for the economy.

While voters may use logic and data to choose a candidate, they are also influenced by the candidates’ charisma and their own prejudice through advertisement. In short, it is clear that the voting public may be easily misled [3] because of bias and lack of analytical skill [4]. As a result, voters don’t always make the best choice for a candidate.

Similarly, experts are not always able to create or choose the best policies. A recent survey found 48 policy failures compared with only ten successes [5] over the study period. That high rate of failure shows that the processes of making and of evaluating policy are not well understood [6].

Indeed, on the surface, those numbers suggest our policies are successful only about 17 percent of the time. Multiple forms of failure include failure in the policy making process, failure in the implementation of policies, and failure of politics so that the entire business of governing becomes more difficult [7].

Instead of creating reliable policies, we end up seeking scapegoats, often among citizens of our own nation. It seems that something about the design of our policies makes them highly susceptible to failure.

To avoid that difficulty in the present paper, we will use an unusual, even heterodox, approach to integrating and analyzing policy maps. Unlike other methods, IPA provides a way to objectively evaluate a policy map in terms of the structure of the map itself.

METHOD

The present approach, Integrative Propositional Analysis (IPA), is founded on insights from complexity theory and systems thinking. It also draws on traditions from scientometrics, bibliometrics, grounded theory, and dimensional analysis [8]. Working at the intersection between cognitive science and systems science, IPA focuses on mapping and evaluating the systemic structure of conceptual systems such as policy models and relating that structure to the potential usefulness or effectiveness of that conceptual system in practical application.

Maps of our conceptual models are useful for understanding and communicating complex information by political elites [9], enable learning in students [10], and generally improving shared understanding of complex issues [11]. Those maps should be made using causal linkages between the concepts to improve scientific understanding [12]. Importantly, IPA extends and improves Axelrod’s approach to mapping by providing objective measures of conceptual maps.
Existing methods for analyzing policies include (a) looking at how much the data support the policy (which may be understood as the *correspondence* between the concepts of the policy and the reality); (b) how much stakeholders and experts agree about the policy (which we may understand as the level of *consensus* for the policy); and (c) using IPA to look at the logics (that may be understood as the *coherence* between the concepts, or our understanding of how the concepts fit together).

We can understand coherence by understanding the structures of logic. For a familiar example, consider a “circular logic” found in circular arguments or tautologies. One might say, “Increasing levels of A will cause increasing levels of B, leading to increasing levels of C and then to increasing levels of A.” In this case, we don’t need to know what the “data” are “inside the boxes.” We do not need to know what A, B, and C represent. We merely need to know that there is a circular arrangement of connections “between the boxes” to know that something is lacking.

Research has indicated that a “transformative logic” is more effective for representing useful understanding [1, 8, 13]. Research has also shown that more complex, interconnected mental models enable greater understanding and success for politicians, managers, and others [14, 15]. A transformative logic structure may be seen in a dialectic, where thesis and antithesis combine to create synthesis. Or, very simply, it may be visualized in a map where a box (containing a transformative concept) has two or more causal arrows pointing towards it from other boxes.

In Figure 1, “Concept C” is a transformative concept because it has two arrows pointing towards it. A concept is transformative when the map shows two or more things that cause more (or less) of that concept to happen. From a research perspective, A and B are the independent (causal) variables while C is the dependent (resultant or transformative) variable. It is generally understood that having a higher ratio of independent to dependent variables improves the validity of the data.

![Figure 1 – Transformative Logic Structure](image)

The studies cited above and related research indicate that when a higher percentage of a model’s concepts are transformative, there is a corresponding likelihood that the model will be useful in practical application. For a policy map, this means it is more likely to be implemented as planned and reach its stated goals.

In policies with a higher percentage of transformative concepts, there will also be more causal connections between the concepts (because each transformative concept must have two or more arrows pointing toward it). Because there are more connections between independent and dependent concepts, we can say that such policies have more systemic connections. This is important because, in general, there seems to be a consensus that theories that are more systemic will be more effective in practical application [16, 17]. The same may be said of policies because...
policy maps, like theories, serve as a representation for how the world works.

This reflects a fundamental assumption. We seem to live in a world of systems (physical, psychological, economic, etc.). Therefore, that world is best understood and engaged using policy maps that are more systemic. The ability to objectively evaluate, improve, and predict the success of policy models is a game-changer because it adds a new dimension to our ability to choose and shape better policies.

The usefulness of IPA is based on its ability to measure the “Depth” of a policy map. That is to say “how systemic” the policy is and therefore how likely it is to be effective at understanding and engaging the world to reach the stated goals of the policy. IPA also measures the “Breadth” of a map or how complex it is. This is the number of concepts that are included in the map. For example, a map containing only one concept “taxes” would have a Breadth of one. A map including “taxes,” “interest rates,” and “GDP” would have a Breadth of three because it contains three concepts.

Integrative Propositional Analysis is a six-step process for objectively evaluating the internal structure of conceptual systems such as theories or policy maps [8]:

1. Identify propositions within one or more policies (such as from text found on websites).
2. Map those propositions with one box for each concept and arrows indicating directions of causal effects.
3. Find linkages between causal concepts and resultant concepts between all propositions, and link the small diagrams together to create an integrated map.
4. Count the total number of concepts (to find the Breadth).
5. Identify and count the number of transformative concepts (see Figure 1 for an example).
6. Divide the number of transformative concepts by the total number of concepts in the map (to find the Depth).

This six-step IPA process provides three key results: 1) a map (in the form of a causal map), 2) a measure of Breadth (the number of concepts in the map), and 3) a measure of Depth (a measure of sense-making capacity or usefulness of the map).

Applying IPA to Figure 1, we see that it has a Breadth of 3 (three concepts: A, B, C) and it has a Depth of 0.33 (the result of one transformative concept divided by three total concepts).

The ability to objectively evaluate, improve, and predict the success of policy models is a game-changer.

The Breadth is simply a measure of the number of concepts within a map. Ashby’s law of requisite variety “holds that for a biological or social entity to be adaptive, the variety of its internal order must match the variety imposed by environmental constraints” [18]. This suggests that a broader policy (one having more concepts) will be more useful for understanding and engaging a more complex situation. When the policy has a higher level of Breadth, that policy includes more dimensions of understanding. That is, the policy has the potential to cover more ground.

While it is not yet known how many concepts are needed to create a policy that is sufficient for understanding and managing...
our economy, the vast amount of literature on the topic suggests that we need policies with more concepts rather than fewer. From our research, Breadth appears to be a weak indicator of the potential for policy success. The benefit of including many concepts is limited by the difficulty of tracking and controlling those many areas. For example, the United Nations has been arguably more successful than the League of Nations (certainly, it has endured longer). And, the UN charter is far more complex than that of the League. However, the UN budget is also many times larger than was the budget of the League [1].

The Depth is the measure of how well connected the concepts are within the policy. As a ratio of “transformative” concepts to the total number of concepts, it is presented as a number between zero and one. One is the greatest level of Depth. Depth might be understood as the internal coherence of the policy map. By understanding the causal connections (including feedback loops) between the concepts, we learn how each is understood in relation to the others.

This coherentist approach is different from, yet useful with, the usual correspondence approach of identifying the relationships between the concept and the empirical data. It is also useful and complementary with the consensus approach of identifying the level of stakeholder and expert agreement.

Our research has found that Depth is a strong indicator of success for theories [13] in much the same way that more complex, interconnected mental models enable greater understanding and success for politicians, managers, and others [14, 15].

With IPA we may objectively evaluate the Breadth and Depth of proposed policies to predict their chances of successful implementation. With insights from IPA, a systems based tool, we improve our “systems intelligence” [19] so that voters may, “act intelligently even in the absence of objective knowledge” [20, p. ix]. Thus we gain greater collective ability to understand and resolve complex problems. Importantly, IPA is the only method for evaluating the logic structure of policies that is both rigorous and objective [21].

The IPA methodology has been gaining ground in the academic literature. In addition to its being shown to be a useful tool for evaluating policy [22], IPA has also proved useful for integrating theory within and between disciplines [23], developing improved theory [24], identifying the useful core of theory [25], analyzing and improving ethics [26, 27], and improving submissions for funding [eg. 28]. IPA also inspired a game for collaborative knowledge generation and a related paper that received the “Best Paper” award in the Innovation and Future Direction in Education Track at the 2015 Association for Business Simulation and Experiential Learning conference [29].

Specifically to the field of policy, IPA has been suggested as a tool for evaluating policy maps to improve results and reduce conflict between policy participants [30], to compare the structure of policies with their results [1], and to compare proposed policies of political parties [31]. Further, IPA was
foundational in a recent Fulbright Specialist Project where it was used to support the evaluation and improvement of theories and policies.

For IPA, the policy maps are the data. For this study, those maps were drawn from the website of each candidate for President of the United States in 2016 where those sites contained some kind of written economic policy,¹ to find a balanced and unbiased understanding of the candidates’ perspectives. Where possible, we used pages or documents on candidates’ websites with “economy” in the title. In those cases where such clarity was lacking, we used those parts of each candidates’ policy statements that seemed most directly related to economic matters. These included suggestions for large scale changes in such areas as the tax code and even the military — where the candidate indicated that such changes would have an impact on the economy.

Because these policy maps were drawn from the candidates’ sites, we are working under the assumption that each policy is a fair and adequate representation of the candidate’s position. There is a wide variety of related issues that are beyond the scope of the present paper. For example, we have no way to know if each candidate has data to support that policy, is telling the truth, slanting the proposal to present what he or she believes the voters want to hear, or if the candidate will actually implement the policy as indicated (if elected). Those are also important dimensions to consider but must be addressed in other analyses.

Because policy analysis in general is an evolving science, it is difficult to perfectly judge which of the present policies might be “best.” What IPA does provide is a new perspective for unravelling a previously tangled problem.

In the following section, we present the results of our IPA study of the candidates’ economic proposals. Both researchers reviewed the candidates’ economic policies as stated on their websites, reached agreement on the concepts, and came to agreement on the resulting maps. For a more detailed presentation of the IPA process, please see one of the online resources including: http://scipolicy.org/ipa-in-action-an-example.html and http://scipolicy.org/potus-candidates-policies.html

ANALYSIS

In this study, we used economic policies from each of the 15 registered candidates for President of the United States for whom an economic policy was available on their websites as of August, 2015. These included ten

Republican candidates (Carson, Christie, Gilmore, Graham, Huckabee, Paul, Perry, Rubio, Trump, and Walker) and five Democratic candidates (Chafee, Clinton, O’Malley, Sanders, and Webb). We applied IPA to each policy; Figure 2 shows a plot of the results. For detailed maps of individual candidates’ policies, please see the white papers located here: http://scipolicy.org/potus-candidates-policies.html

Six candidates’ policies were not included because their web sites did not provide a clear text of their economic policies: Bush, Carley, Cruz, Jimdal, Pantaki, and Santorum. As shown in Figure 2, the Breadth scores of the 15 candidates’ maps ranged from a low of 5 (Chaffee) to a high of 50 (Christi). The Depths of the maps were all quite low on the Depth scale from zero to one, ranging from a low of 0.00 (Carson, Chaffee, Huckabee, Walker, and Webb) to a high of 0.18 (Rubio).

Metaphorically, we might think of a policy map as a road map. That way, we can understand the Breadth of the map as counting the number of cities on the map. The Depth of the map is an indicator of how many roads are available to reach those cities. A greater Depth score indicates that there are more options for reaching each destination.

If we, as voters, are presented with a map showing cities without roads, we have good cause to question the usefulness of that map for navigation. Continuing the metaphor, it is not enough for candidates to state a position by saying, for example, “The three most important cities are New York, Chicago, and my home town.” It is of equal importance that the candidate shows that they can help the American economy reach those destinations. The Depth score indicates that ability. While the maps investigated here are probably not the complete representation of the candidates’ understanding, they certainly provide a useful point of comparison.

In Figure 2, we see those options laid out in four quadrants. In the lower left (LL), policies have low Breadth and little Depth. If used by themselves for implementing policies, those have a very low chance of achieving their stated goals. In the lower right (LR) policies have higher Breadth but not much Depth. Policies in this quadrant have a slightly greater chance of success, although implementing those policies will be more difficult (trying to visit many cities without knowing which roads to take). The upper left (UL) would contain policies of greater Depth but not much Breadth. Policies in the UL would also be expected to have some success; however, such policies would be narrow and may fail to address important issues. We expect to find the most successful policies in the upper right (UR) quadrant where they would have sufficient Breadth and Depth to reflect a deep understanding of our complex economic issues.
Figure 2: IPA results of POTUS candidates' economic policies as stated on their websites

Successful policies should be here
A variety of insights may be immediately gained from Figure 2, along with a number of intriguing questions and challenging conversations.

It is immediately obvious that the vast majority (11 of the 15) policies are in the LL quadrant. Based on this information, we can expect a very low likelihood of success from those policies. A few POTUS candidates provide policies of greater Breadth (Christi, Clinton, Graham, Trump) in the LR quadrant. Looking at the structure of the policies alone, those are likely to be slightly more successful than the others, although a high level of success over the long run is questionable.

There is an amount of trade-off possible here. While Rubio has the greatest Depth, Clinton has a Depth that is only slightly less but also has a Breadth that is much greater.

The most important suggestion from the present study is that voters (in addition to their other rubrics for making decisions) should consider voting for candidates whose policies have greater Breadth and Depth. And, we suggest that candidates should strive to increase the Breadth and Depth of their policies.

It is interesting that no clear pattern emerges when considering political party. Looking at the quadrants in Figure 1, both Republican and Democratic parties included candidates with lower Breadth (LL) and higher Breadth (LR) policies.

WHY POTUS CANDIDATES HAVE POOR ECONOMIC POLICIES

It is beyond the scope of the present paper to determine whether one or more candidates might not be telling the whole truth of their understanding, slanting their policy message to appeal to a particular demographic, or purposefully presenting a simplified policy map. All of those may be worthy of additional investigation. And, each may provide some kind of explanation for why so many candidates are in the LL and LR quadrants – far from where we would expect to find policy maps that will be highly useful.

A deeper explanation for the generally low level of Breadth and Depth for these policies is that the science of policy making is generally limited. Indeed, in our analyses of policies, laws, theories, and other conceptual constructs, we generally find low levels of Breadth and Depth.

Metaphorically, each policy may be seen as a race car. Certainly, one car may be faster than the others. However, the speed of all cars will be similar – based on the limitations of their common technology. In early auto races, cars achieved speeds of about 12 miles per hour. Today, Formula One cars clock in at around 200 miles per hour. The technology limits our ability, whether we are talking about race cars or policy plans. The best minds of today are making policies at 12 miles per hour for a world that is moving at 200.

This limitation is shared with other branches of the social/behavioral sciences. By way of comparison, our study into theories of conflict as found in sociology [32] finds much the same results as our study into theories of entrepreneurship [33]. Among the theories
we have analyzed to date, on average, theories tend to have a Breadth between 10 and 20 concepts. And, in both sociology and entrepreneurship, most theories have a Depth between 0.1 and 0.3. In a study on theories of psychology [21], the Depth of theories was below 0.3, and the Breadth between 6 and 13. In all three fields, the Depth has been at or below 0.4, and a Breadth typically well below 50.

While POTUS candidates may have created purposefully simple policies for public consumption, it is also important to note that the low scores for these policies is also due to the inherent limitation of human cognition and the limits of the social sciences. Whether we are talking about scholars or political candidates, individuals have difficulty understanding policies relating to complex issues [29]. Thus, IPA is beneficial for voters and advocates who want to be able to integrate information that will clarify what candidates are saying, show what the candidates are understanding, and indicate what the candidates are leaving unsaid.

INTEGRATION

Although the policies of individual candidates tend to have low levels of Breadth and Depth, IPA provides a path to combine the many maps and work towards creating a single policy with a greater likelihood of success. And, by inference, fewer unanticipated consequences. Using IPA, we integrated all 15 individual candidate maps to create a combined map (see Figure 3). It has 283 concepts, a much wider Breadth than any of the individual maps. Twenty-six of the concepts were transformative (explained by two or more other concepts), for a Depth score of 0.09 (26 divided by 283). This is six more transformative concepts than the total of 20 transformative concepts in the 15 individual candidates’ maps.

Importantly, this “free” increase in transformative concepts, brought about by integrating multiple maps, represents a significant increase in the explanatory value of the map. That is to say, elected presidents using this integrated map will be more likely to be aware of a broader range of policy options and trade-offs, to understand the economy, and lead our nation to economic success.

Voters can use this integrated map to help them be more aware of the broad range of policy options and trade-offs, to inform voting decisions and dialogue about the issues. Of course, increased Depth would be optimal. Achieving that Depth will require a bit more work as we will mention later.
We encourage you to visit the online, integrated map which is interactive and has many features for analysis at: https://kumu.io/Center-for-Scientific-Analysis-of-Policy/all-potus-candidates-economic-policies#

In the online map (Figure 3), the blue circles and arrows represent concepts and causal relationships provided by Democratic candidates, while the red circles and arrows are provided by the Republicans. The purple circles and arrows represent concepts and causal relationships shared by both parties. The larger size of some of the circles indicates that multiple candidates include that particular concept as part of their maps.

While Figure 3 cannot be shown here at a scale to make the many concepts readable, some interesting features are immediately visible. First, that there is a highly connected “core” of concepts – many of which are shared between the two parties. Second, there is an outer “belt” of disconnected concepts. Third, and more generally, it is possible to create a better map and a better understanding of our economy through collaboration rather than competition. Fourth, the map highlights the large number of disconnected concepts. This opens the door for more rapid improvement of economic policy by identifying connections between those concepts through additional research. Finally, this map shows that there are many areas of common thinking between the parties and between some candidates.

Although candidates proposed differing causes for the various concepts in the integrated map, these are not necessarily contradictory. It is worth noting that the combination of concepts provides a stronger understanding than any individual map. Or, returning to our metaphor, the integrated map shows multiple roads for reaching desired destinations, such as economic growth.

NEXT STEPS

The present analysis suggests a variety of additional actions that may be useful for understanding and improving policy and its development.

For researchers:
- Obtain more detailed information from candidates to better evaluate their policy positions.
- Convene a group of economic and political experts to provide additional evaluation of the existing integrated map, and to improve the map.
- Improve our shared understanding of economic policy by researching potential causal connections between currently unconnected concepts. That is, to fill the gaps in the map.
- Apply IPA for analysis and gaining insight in a variety of different contexts. For example, policy maps for defense, crime, poverty, or immigration.

For Activists
- Convene a group of citizens to review the integrated map in greater detail and evaluate the map’s relevance to their community.
- Use the online integrated map as a tool for conversation and collaborative policy improvement.
- Track the policy proposals of candidates for the duration of the campaign to see if their policies are improving.
- After the election, track policy decisions over time to see the extent to which the elected candidate is following the policy.
For Educators:

- Use IPA for analyzing candidates’ policies in the classroom. There, teams of students could use a “gamified” approach that we call ASK MATT to analyze policies proposed by candidates, compare and contrast their results, and make very cogent suggestions for improving the structure of those policies. That kind of approach would help students learn current events more quickly because the use of games and maps have been shown to enhance learning and retention [34].

Finally, policy consultants working for (and/or against) candidates might also find IPA useful for analyzing candidates’ policies. Consultants could use IPA to help candidates develop policies with greater structure – thus allowing candidates to claim that their policies will have a greater chance of success than their opponents’ policies. Candidates could also use maps to present their policies to the voters with greater clarity.

A deep underlying question may be asked about this kind of research. The very important “So what?” It could be argued that it doesn’t really matter what kind of map we make of the real world. The streams will still flow, beaches will still be near the ocean, and so on. So, what does it matter if our map has great Breadth and Depth? The economy will continue to flow along, whether we map it or not. The answer is quite simple. While the map is clearly not the same thing as the terrain, the map is what we use for making decisions about how we traverse the terrain.

For example, a few years ago I hiked up Half Dome in Yosemite Valley National Park. After enjoying the splendid view from the top of the granite cliff, I then hiked down. Of course, the change in altitude from the top of the cliff to the bottom of the valley is the same whether one walks or plummets. The map let me choose the safer route.

CONCLUSION

In the introduction, we presented research suggesting that policies seem to be successful only about 17 percent of the time. It may be extremely interesting to compare that policy success rate of about 17 percent with the present study where no candidate has a policy map with a Depth greater than 0.18. Such comparisons lend credence to our idea that the Depth of a map provides a rough indication for its potential success.

As a result of our shared inability to create successful policy, our nation faces a very difficult situation. Not only our economic policies but our entire economic paradigm is flawed because there are “multiple views of social reality and policy problems and no definitive way to adjudicate among them” [35, p. 862]. Now, however, IPA provides a new and objective method to supplement existing methods for evaluation as well as a path for integrating multiple views to create a shared view that is objectively better.

The present study makes at least three important contributions. First, it compared the candidates’ economic policies and so provides voters with a new tool for choosing a candidate. In a sense, providing the voter with “X-ray vision” into each candidate’s ability to understand economic policy – at least to the extent that the candidates have provided reasonably accurate, or at least comparable, representations of their policies. Second, it provides an interactive, integrated map showing that our combined understanding is better that the sum of its parts. Third, this paper provides a path forward for improving our shared policy in an objective
way, so that we may get on with the business of government, including developing a more successful economy, rather than spend our time in senseless argument.

Along those lines, the IPA approach suggests how voter groups may use this kind of map to pose key questions to candidates. If a candidate presents a map of disconnected concepts, he or she may be legitimately questioned about the validity of the plan—and asked to explain how they plan to make those points on the map happen. After all, that map will help decide the economic fate of our nation.

Indeed, using this approach, a group of citizens and experts could easily create an economic policy that is far better than those presented by our candidates. It is interesting to consider what might happen if the electorate no longer needs or benefits from the poor plans of the candidates.

This document has concentrated on the employment of Integrative Propositional Analysis (IPA) for evaluation of proposed policy in order to determine the probability of achieving its stated objectives. That function, forecasting if you will, is but one of three means by which application of IPA can result in (more) successful policy.

In the initiation of policy creation and in the interest of producing policy likely to succeed, application of IPA at intervals during the writing can point to areas of the map which are of strength as well as those of weakness. These can be addressed and modified, the former by enhancement whereas the latter can be altered or eliminated, whichever results in improvement of the IPA score.

There are policies which after enactment fail to achieve their desirable stated goals and may result in unanticipated, unintended, and/or undesirable consequences. In some cases, the goals are worthy, but there are parts of the map that are detrimental to its achieving success. In such cases, application of IPA can result in remediation that revitalizes the program.

It is beyond the scope of the present paper to determine if each candidate has based his or her policy on legitimate data. Similarly, it is beyond the scope of this paper to evaluate whether a candidate will actually apply her or his espoused policy as presented. However, having a map of the policy increases the transparency of that policy and increases the legitimacy of subsequent compliments or complaints about the behavior of that one candidate who is elected. In short, the present paper may serve as a guide for evaluating active candidates, and we recommend additional studies as the election moves forward.

Voters will be best served if they choose candidates based on the policies which are more likely to be relevant to the needs of the country and most likely to be successful. What an individual considers “relevant” seems to be mainly a matter of individual choice. One person may be concerned about taxes, while another is concerned about job creation. That said, a policy containing more
concepts (Breadth) has a greater possibility of including concepts of relevance. Policies of great Depth (more interconnectedness) are more likely to be effective when applied. Optimistically, this hints that the best candidate will be one who integrates multiple policy maps to create a policy that has greater Depth and Breadth.

Using IPA as a tool for policy analysis and improvement increases the ability of voters to make good voting decisions by opening a new and effective dimension to discussing the policy positions of POTUS candidates.

REFERENCES

